(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_20 (Apple Inc.) Main-Class: Test1
public class Test1 {
public static void main(String[] args) {
rec(args.length, args.length % 5, args.length % 4);
}

private static void rec(int x, int y, int z) {
if (x + y + 3 * z < 0)
return;
else if (x > y)
rec(x - 1, y, z);
else if (y > z)
rec (x, y - 2, z);
else
rec (x, y, z - 1);
}
}

(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
Test1.main([Ljava/lang/String;)V: Graph of 22 nodes with 0 SCCs.

Test1.rec(III)V: Graph of 61 nodes with 0 SCCs.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 45 rules for P and 21 rules for R.


Combined rules. Obtained 3 rules for P and 6 rules for R.


Filtered ground terms:


1062_0_rec_Load(x1, x2, x3, x4, x5) → 1062_0_rec_Load(x2, x3, x4, x5)
Cond_1062_0_rec_Load2(x1, x2, x3, x4, x5, x6) → Cond_1062_0_rec_Load2(x1, x3, x4, x5, x6)
Cond_1062_0_rec_Load1(x1, x2, x3, x4, x5, x6) → Cond_1062_0_rec_Load1(x1, x3, x4, x5, x6)
Cond_1062_0_rec_Load(x1, x2, x3, x4, x5, x6) → Cond_1062_0_rec_Load(x1, x3, x4, x5, x6)
1150_0_rec_Return(x1) → 1150_0_rec_Return
1081_0_rec_Return(x1, x2, x3, x4) → 1081_0_rec_Return(x2, x3, x4)

Filtered duplicate args:


1062_0_rec_Load(x1, x2, x3, x4) → 1062_0_rec_Load(x2, x3, x4)
Cond_1062_0_rec_Load2(x1, x2, x3, x4, x5) → Cond_1062_0_rec_Load2(x1, x3, x4, x5)
Cond_1062_0_rec_Load1(x1, x2, x3, x4, x5) → Cond_1062_0_rec_Load1(x1, x3, x4, x5)
Cond_1062_0_rec_Load(x1, x2, x3, x4, x5) → Cond_1062_0_rec_Load(x1, x3, x4, x5)

Combined rules. Obtained 3 rules for P and 6 rules for R.


Finished conversion. Obtained 3 rules for P and 6 rules for R. System has predefined symbols.


(4) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
1162_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2) → 1150_0_rec_Return
1162_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2) → 1150_0_rec_Return
1170_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2) → 1150_0_rec_Return
1170_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2) → 1150_0_rec_Return
1133_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2) → 1150_0_rec_Return
1133_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2) → 1150_0_rec_Return

The integer pair graph contains the following rules and edges:
(0): 1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0], x1[0], x2[0], x0[0])
(1): COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], x2[1] - 1, x0[1])
(2): 1062_0_REC_LOAD(x1[2], x2[2], x0[2]) → COND_1062_0_REC_LOAD1(x2[2] < x1[2] && x1[2] >= x0[2] && 0 <= x0[2] + x1[2] + 3 * x2[2], x1[2], x2[2], x0[2])
(3): COND_1062_0_REC_LOAD1(TRUE, x1[3], x2[3], x0[3]) → 1062_0_REC_LOAD(x1[3] - 2, x2[3], x0[3])
(4): 1062_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1062_0_REC_LOAD2(x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4], x1[4], x2[4], x0[4])
(5): COND_1062_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1062_0_REC_LOAD(x1[5], x2[5], x0[5] - 1)

(0) -> (1), if ((x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0]* TRUE)∧(x1[0]* x1[1])∧(x2[0]* x2[1])∧(x0[0]* x0[1]))


(1) -> (0), if ((x1[1]* x1[0])∧(x2[1] - 1* x2[0])∧(x0[1]* x0[0]))


(1) -> (2), if ((x1[1]* x1[2])∧(x2[1] - 1* x2[2])∧(x0[1]* x0[2]))


(1) -> (4), if ((x1[1]* x1[4])∧(x2[1] - 1* x2[4])∧(x0[1]* x0[4]))


(2) -> (3), if ((x2[2] < x1[2] && x1[2] >= x0[2] && 0 <= x0[2] + x1[2] + 3 * x2[2]* TRUE)∧(x1[2]* x1[3])∧(x2[2]* x2[3])∧(x0[2]* x0[3]))


(3) -> (0), if ((x1[3] - 2* x1[0])∧(x2[3]* x2[0])∧(x0[3]* x0[0]))


(3) -> (2), if ((x1[3] - 2* x1[2])∧(x2[3]* x2[2])∧(x0[3]* x0[2]))


(3) -> (4), if ((x1[3] - 2* x1[4])∧(x2[3]* x2[4])∧(x0[3]* x0[4]))


(4) -> (5), if ((x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4]* TRUE)∧(x1[4]* x1[5])∧(x2[4]* x2[5])∧(x0[4]* x0[5]))


(5) -> (0), if ((x1[5]* x1[0])∧(x2[5]* x2[0])∧(x0[5] - 1* x0[0]))


(5) -> (2), if ((x1[5]* x1[2])∧(x2[5]* x2[2])∧(x0[5] - 1* x0[2]))


(5) -> (4), if ((x1[5]* x1[4])∧(x2[5]* x2[4])∧(x0[5] - 1* x0[4]))



The set Q consists of the following terms:
1162_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1162_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)
1170_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1170_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)
1133_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1133_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)

(5) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 1062_0_REC_LOAD(x1, x2, x0) → COND_1062_0_REC_LOAD(&&(&&(>=(x2, x1), >=(x1, x0)), <=(0, +(+(x0, x1), *(3, x2)))), x1, x2, x0) the following chains were created:
  • We consider the chain 1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0]), COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1]) which results in the following constraint:

    (1)    (&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0]))))=TRUEx1[0]=x1[1]x2[0]=x2[1]x0[0]=x0[1]1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (<=(0, +(+(x0[0], x1[0]), *(3, x2[0])))=TRUE>=(x2[0], x1[0])=TRUE>=(x1[0], x0[0])=TRUE1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] + [(2)bni_19]x2[0] + [(2)bni_19]x1[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] + [(2)bni_19]x2[0] + [(2)bni_19]x1[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] + [(2)bni_19]x2[0] + [(2)bni_19]x1[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x0[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧[2]x1[0] + [3]x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]x1[0] + [(-1)bni_19]x2[0] + [bni_19]x0[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [(-1)bni_19]x1[0] + [bni_19]x0[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)







For Pair COND_1062_0_REC_LOAD(TRUE, x1, x2, x0) → 1062_0_REC_LOAD(x1, -(x2, 1), x0) the following chains were created:
  • We consider the chain COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1]) which results in the following constraint:

    (8)    (COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])∧(UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥))



    We simplified constraint (8) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (9)    ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[1 + (-1)bso_22] ≥ 0)



    We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (10)    ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[1 + (-1)bso_22] ≥ 0)



    We simplified constraint (10) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (11)    ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[1 + (-1)bso_22] ≥ 0)



    We simplified constraint (11) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (12)    ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_22] ≥ 0)







For Pair 1062_0_REC_LOAD(x1, x2, x0) → COND_1062_0_REC_LOAD1(&&(&&(<(x2, x1), >=(x1, x0)), <=(0, +(+(x0, x1), *(3, x2)))), x1, x2, x0) the following chains were created:
  • We consider the chain 1062_0_REC_LOAD(x1[2], x2[2], x0[2]) → COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2]), COND_1062_0_REC_LOAD1(TRUE, x1[3], x2[3], x0[3]) → 1062_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3]) which results in the following constraint:

    (13)    (&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2]))))=TRUEx1[2]=x1[3]x2[2]=x2[3]x0[2]=x0[3]1062_0_REC_LOAD(x1[2], x2[2], x0[2])≥NonInfC∧1062_0_REC_LOAD(x1[2], x2[2], x0[2])≥COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])∧(UIncreasing(COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥))



    We simplified constraint (13) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (14)    (<=(0, +(+(x0[2], x1[2]), *(3, x2[2])))=TRUE<(x2[2], x1[2])=TRUE>=(x1[2], x0[2])=TRUE1062_0_REC_LOAD(x1[2], x2[2], x0[2])≥NonInfC∧1062_0_REC_LOAD(x1[2], x2[2], x0[2])≥COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])∧(UIncreasing(COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥))



    We simplified constraint (14) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (15)    (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] + [(2)bni_23]x2[2] + [(2)bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (15) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (16)    (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] + [(2)bni_23]x2[2] + [(2)bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (16) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (17)    (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] + [(2)bni_23]x2[2] + [(2)bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (17) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (18)    (x0[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧[2]x1[2] + [3]x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [(-1)bni_23]x2[2] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (18) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (19)    (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)Bound*bni_23 + (2)bni_23] + [bni_23]x1[2] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (19) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (20)    (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)Bound*bni_23 + (2)bni_23] + [bni_23]x1[2] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)


    (21)    (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [-5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)Bound*bni_23 + (2)bni_23] + [bni_23]x1[2] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)







For Pair COND_1062_0_REC_LOAD1(TRUE, x1, x2, x0) → 1062_0_REC_LOAD(-(x1, 2), x2, x0) the following chains were created:
  • We consider the chain COND_1062_0_REC_LOAD1(TRUE, x1[3], x2[3], x0[3]) → 1062_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3]) which results in the following constraint:

    (22)    (COND_1062_0_REC_LOAD1(TRUE, x1[3], x2[3], x0[3])≥NonInfC∧COND_1062_0_REC_LOAD1(TRUE, x1[3], x2[3], x0[3])≥1062_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])∧(UIncreasing(1062_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])), ≥))



    We simplified constraint (22) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (23)    ((UIncreasing(1062_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])), ≥)∧[4 + (-1)bso_26] ≥ 0)



    We simplified constraint (23) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (24)    ((UIncreasing(1062_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])), ≥)∧[4 + (-1)bso_26] ≥ 0)



    We simplified constraint (24) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (25)    ((UIncreasing(1062_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])), ≥)∧[4 + (-1)bso_26] ≥ 0)



    We simplified constraint (25) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (26)    ((UIncreasing(1062_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[4 + (-1)bso_26] ≥ 0)







For Pair 1062_0_REC_LOAD(x1, x2, x0) → COND_1062_0_REC_LOAD2(&&(<(x1, x0), <=(0, +(+(x0, x1), *(3, x2)))), x1, x2, x0) the following chains were created:
  • We consider the chain 1062_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4]), COND_1062_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1)) which results in the following constraint:

    (27)    (&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4]))))=TRUEx1[4]=x1[5]x2[4]=x2[5]x0[4]=x0[5]1062_0_REC_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1062_0_REC_LOAD(x1[4], x2[4], x0[4])≥COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))



    We simplified constraint (27) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (28)    (<(x1[4], x0[4])=TRUE<=(0, +(+(x0[4], x1[4]), *(3, x2[4])))=TRUE1062_0_REC_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1062_0_REC_LOAD(x1[4], x2[4], x0[4])≥COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))



    We simplified constraint (28) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (29)    (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[bni_27 + (-1)Bound*bni_27] + [bni_27]x0[4] + [(2)bni_27]x2[4] + [(2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)



    We simplified constraint (29) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (30)    (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[bni_27 + (-1)Bound*bni_27] + [bni_27]x0[4] + [(2)bni_27]x2[4] + [(2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)



    We simplified constraint (30) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (31)    (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[bni_27 + (-1)Bound*bni_27] + [bni_27]x0[4] + [(2)bni_27]x2[4] + [(2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)



    We simplified constraint (31) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (32)    (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [(3)bni_27]x1[4] + [bni_27]x0[4] + [(2)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)



    We simplified constraint (32) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (33)    (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [(3)bni_27]x1[4] + [bni_27]x0[4] + [(2)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)


    (34)    (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [(-3)bni_27]x1[4] + [bni_27]x0[4] + [(2)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)



    We simplified constraint (33) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (35)    (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [(3)bni_27]x1[4] + [bni_27]x0[4] + [(2)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)


    (36)    (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [(3)bni_27]x1[4] + [bni_27]x0[4] + [(-2)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)



    We simplified constraint (34) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (37)    (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [(-3)bni_27]x1[4] + [bni_27]x0[4] + [(2)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)


    (38)    (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [(-3)bni_27]x1[4] + [bni_27]x0[4] + [(-2)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)



    We simplified constraint (35) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (39)    (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [(3)bni_27]x1[4] + [bni_27]x0[4] + [(2)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)



    We simplified constraint (36) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (40)    (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧[-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [(3)bni_27]x1[4] + [bni_27]x0[4] + [(-2)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)



    We simplified constraint (37) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (41)    (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [(-3)bni_27]x1[4] + [bni_27]x0[4] + [(2)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)



    We simplified constraint (38) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (42)    (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧[-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [(-3)bni_27]x1[4] + [bni_27]x0[4] + [(-2)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)







For Pair COND_1062_0_REC_LOAD2(TRUE, x1, x2, x0) → 1062_0_REC_LOAD(x1, x2, -(x0, 1)) the following chains were created:
  • We consider the chain COND_1062_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1)) which results in the following constraint:

    (43)    (COND_1062_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5])≥NonInfC∧COND_1062_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5])≥1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))∧(UIncreasing(1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥))



    We simplified constraint (43) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (44)    ((UIncreasing(1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[1 + (-1)bso_30] ≥ 0)



    We simplified constraint (44) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (45)    ((UIncreasing(1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[1 + (-1)bso_30] ≥ 0)



    We simplified constraint (45) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (46)    ((UIncreasing(1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[1 + (-1)bso_30] ≥ 0)



    We simplified constraint (46) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (47)    ((UIncreasing(1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_30] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 1062_0_REC_LOAD(x1, x2, x0) → COND_1062_0_REC_LOAD(&&(&&(>=(x2, x1), >=(x1, x0)), <=(0, +(+(x0, x1), *(3, x2)))), x1, x2, x0)
    • (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[bni_19 + (-1)Bound*bni_19] + [(-1)bni_19]x1[0] + [bni_19]x0[0] ≥ 0∧[1 + (-1)bso_20] ≥ 0)

  • COND_1062_0_REC_LOAD(TRUE, x1, x2, x0) → 1062_0_REC_LOAD(x1, -(x2, 1), x0)
    • ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_22] ≥ 0)

  • 1062_0_REC_LOAD(x1, x2, x0) → COND_1062_0_REC_LOAD1(&&(&&(<(x2, x1), >=(x1, x0)), <=(0, +(+(x0, x1), *(3, x2)))), x1, x2, x0)
    • (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)Bound*bni_23 + (2)bni_23] + [bni_23]x1[2] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
    • (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [-5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)Bound*bni_23 + (2)bni_23] + [bni_23]x1[2] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)

  • COND_1062_0_REC_LOAD1(TRUE, x1, x2, x0) → 1062_0_REC_LOAD(-(x1, 2), x2, x0)
    • ((UIncreasing(1062_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[4 + (-1)bso_26] ≥ 0)

  • 1062_0_REC_LOAD(x1, x2, x0) → COND_1062_0_REC_LOAD2(&&(<(x1, x0), <=(0, +(+(x0, x1), *(3, x2)))), x1, x2, x0)
    • (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [(3)bni_27]x1[4] + [bni_27]x0[4] + [(2)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)
    • (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧[-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [(3)bni_27]x1[4] + [bni_27]x0[4] + [(-2)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)
    • (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [(-3)bni_27]x1[4] + [bni_27]x0[4] + [(2)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)
    • (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧[-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_27 + (-1)Bound*bni_27] + [(-3)bni_27]x1[4] + [bni_27]x0[4] + [(-2)bni_27]x2[4] ≥ 0∧[(-1)bso_28] ≥ 0)

  • COND_1062_0_REC_LOAD2(TRUE, x1, x2, x0) → 1062_0_REC_LOAD(x1, x2, -(x0, 1))
    • ((UIncreasing(1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_30] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(1162_1_rec_InvokeMethod(x1, x2, x3, x4)) = [-1]   
POL(1081_0_rec_Return(x1, x2, x3)) = [-1]   
POL(1150_0_rec_Return) = [-1]   
POL(1170_1_rec_InvokeMethod(x1, x2, x3, x4)) = [-1]   
POL(1133_1_rec_InvokeMethod(x1, x2, x3, x4)) = [-1]   
POL(1062_0_REC_LOAD(x1, x2, x3)) = [1] + x3 + [2]x2 + [2]x1   
POL(COND_1062_0_REC_LOAD(x1, x2, x3, x4)) = x4 + [2]x3 + [2]x2   
POL(&&(x1, x2)) = [-1]   
POL(>=(x1, x2)) = [-1]   
POL(<=(x1, x2)) = [-1]   
POL(0) = 0   
POL(+(x1, x2)) = x1 + x2   
POL(*(x1, x2)) = x1·x2   
POL(3) = [3]   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(1) = [1]   
POL(COND_1062_0_REC_LOAD1(x1, x2, x3, x4)) = [1] + x4 + [2]x3 + [2]x2   
POL(<(x1, x2)) = [-1]   
POL(2) = [2]   
POL(COND_1062_0_REC_LOAD2(x1, x2, x3, x4)) = [1] + x4 + [2]x3 + [2]x2   

The following pairs are in P>:

1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])
COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])
COND_1062_0_REC_LOAD1(TRUE, x1[3], x2[3], x0[3]) → 1062_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])
COND_1062_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))

The following pairs are in Pbound:

1062_0_REC_LOAD(x1[2], x2[2], x0[2]) → COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])

The following pairs are in P:

1062_0_REC_LOAD(x1[2], x2[2], x0[2]) → COND_1062_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])
1062_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])

There are no usable rules.

(6) Complex Obligation (AND)

(7) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
1162_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2) → 1150_0_rec_Return
1162_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2) → 1150_0_rec_Return
1170_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2) → 1150_0_rec_Return
1170_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2) → 1150_0_rec_Return
1133_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2) → 1150_0_rec_Return
1133_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2) → 1150_0_rec_Return

The integer pair graph contains the following rules and edges:
(2): 1062_0_REC_LOAD(x1[2], x2[2], x0[2]) → COND_1062_0_REC_LOAD1(x2[2] < x1[2] && x1[2] >= x0[2] && 0 <= x0[2] + x1[2] + 3 * x2[2], x1[2], x2[2], x0[2])
(4): 1062_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1062_0_REC_LOAD2(x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4], x1[4], x2[4], x0[4])


The set Q consists of the following terms:
1162_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1162_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)
1170_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1170_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)
1133_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1133_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)

(8) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(9) TRUE

(10) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
1162_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2) → 1150_0_rec_Return
1162_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2) → 1150_0_rec_Return
1170_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2) → 1150_0_rec_Return
1170_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2) → 1150_0_rec_Return
1133_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2) → 1150_0_rec_Return
1133_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2) → 1150_0_rec_Return

The integer pair graph contains the following rules and edges:
(0): 1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0], x1[0], x2[0], x0[0])
(1): COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], x2[1] - 1, x0[1])
(3): COND_1062_0_REC_LOAD1(TRUE, x1[3], x2[3], x0[3]) → 1062_0_REC_LOAD(x1[3] - 2, x2[3], x0[3])
(4): 1062_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1062_0_REC_LOAD2(x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4], x1[4], x2[4], x0[4])
(5): COND_1062_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1062_0_REC_LOAD(x1[5], x2[5], x0[5] - 1)

(1) -> (0), if ((x1[1]* x1[0])∧(x2[1] - 1* x2[0])∧(x0[1]* x0[0]))


(3) -> (0), if ((x1[3] - 2* x1[0])∧(x2[3]* x2[0])∧(x0[3]* x0[0]))


(5) -> (0), if ((x1[5]* x1[0])∧(x2[5]* x2[0])∧(x0[5] - 1* x0[0]))


(0) -> (1), if ((x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0]* TRUE)∧(x1[0]* x1[1])∧(x2[0]* x2[1])∧(x0[0]* x0[1]))


(1) -> (4), if ((x1[1]* x1[4])∧(x2[1] - 1* x2[4])∧(x0[1]* x0[4]))


(3) -> (4), if ((x1[3] - 2* x1[4])∧(x2[3]* x2[4])∧(x0[3]* x0[4]))


(5) -> (4), if ((x1[5]* x1[4])∧(x2[5]* x2[4])∧(x0[5] - 1* x0[4]))


(4) -> (5), if ((x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4]* TRUE)∧(x1[4]* x1[5])∧(x2[4]* x2[5])∧(x0[4]* x0[5]))



The set Q consists of the following terms:
1162_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1162_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)
1170_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1170_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)
1133_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1133_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)

(11) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(12) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


The ITRS R consists of the following rules:
1162_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2) → 1150_0_rec_Return
1162_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2) → 1150_0_rec_Return
1170_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2) → 1150_0_rec_Return
1170_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2) → 1150_0_rec_Return
1133_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2) → 1150_0_rec_Return
1133_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2) → 1150_0_rec_Return

The integer pair graph contains the following rules and edges:
(5): COND_1062_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1062_0_REC_LOAD(x1[5], x2[5], x0[5] - 1)
(4): 1062_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1062_0_REC_LOAD2(x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4], x1[4], x2[4], x0[4])
(1): COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], x2[1] - 1, x0[1])
(0): 1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0], x1[0], x2[0], x0[0])

(1) -> (0), if ((x1[1]* x1[0])∧(x2[1] - 1* x2[0])∧(x0[1]* x0[0]))


(5) -> (0), if ((x1[5]* x1[0])∧(x2[5]* x2[0])∧(x0[5] - 1* x0[0]))


(0) -> (1), if ((x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0]* TRUE)∧(x1[0]* x1[1])∧(x2[0]* x2[1])∧(x0[0]* x0[1]))


(1) -> (4), if ((x1[1]* x1[4])∧(x2[1] - 1* x2[4])∧(x0[1]* x0[4]))


(5) -> (4), if ((x1[5]* x1[4])∧(x2[5]* x2[4])∧(x0[5] - 1* x0[4]))


(4) -> (5), if ((x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4]* TRUE)∧(x1[4]* x1[5])∧(x2[4]* x2[5])∧(x0[4]* x0[5]))



The set Q consists of the following terms:
1162_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1162_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)
1170_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1170_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)
1133_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1133_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)

(13) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(14) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(5): COND_1062_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1062_0_REC_LOAD(x1[5], x2[5], x0[5] - 1)
(4): 1062_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1062_0_REC_LOAD2(x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4], x1[4], x2[4], x0[4])
(1): COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], x2[1] - 1, x0[1])
(0): 1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0], x1[0], x2[0], x0[0])

(1) -> (0), if ((x1[1]* x1[0])∧(x2[1] - 1* x2[0])∧(x0[1]* x0[0]))


(5) -> (0), if ((x1[5]* x1[0])∧(x2[5]* x2[0])∧(x0[5] - 1* x0[0]))


(0) -> (1), if ((x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0]* TRUE)∧(x1[0]* x1[1])∧(x2[0]* x2[1])∧(x0[0]* x0[1]))


(1) -> (4), if ((x1[1]* x1[4])∧(x2[1] - 1* x2[4])∧(x0[1]* x0[4]))


(5) -> (4), if ((x1[5]* x1[4])∧(x2[5]* x2[4])∧(x0[5] - 1* x0[4]))


(4) -> (5), if ((x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4]* TRUE)∧(x1[4]* x1[5])∧(x2[4]* x2[5])∧(x0[4]* x0[5]))



The set Q consists of the following terms:
1162_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1162_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)
1170_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1170_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)
1133_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1133_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)

(15) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_1062_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1)) the following chains were created:
  • We consider the chain COND_1062_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1)) which results in the following constraint:

    (1)    (COND_1062_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5])≥NonInfC∧COND_1062_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5])≥1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))∧(UIncreasing(1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥))



    We simplified constraint (1) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (2)    ((UIncreasing(1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (2) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (3)    ((UIncreasing(1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (3) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (4)    ((UIncreasing(1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (4) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (5)    ((UIncreasing(1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)







For Pair 1062_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4]) the following chains were created:
  • We consider the chain 1062_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4]), COND_1062_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1)) which results in the following constraint:

    (6)    (&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4]))))=TRUEx1[4]=x1[5]x2[4]=x2[5]x0[4]=x0[5]1062_0_REC_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1062_0_REC_LOAD(x1[4], x2[4], x0[4])≥COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))



    We simplified constraint (6) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (7)    (<(x1[4], x0[4])=TRUE<=(0, +(+(x0[4], x1[4]), *(3, x2[4])))=TRUE1062_0_REC_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1062_0_REC_LOAD(x1[4], x2[4], x0[4])≥COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[4] + [(-1)bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[4] + [(-1)bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[4] + [(-1)bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (10) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (11)    (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (12)    (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[(-1)bso_16] ≥ 0)


    (13)    (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (12) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (14)    (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[(-1)bso_16] ≥ 0)


    (15)    (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (13) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (16)    (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[(-1)bso_16] ≥ 0)


    (17)    (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (14) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (18)    (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (15) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (19)    (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧[-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (16) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (20)    (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (17) using rule (IDP_POLY_GCD) which results in the following new constraint:

    (21)    (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧[-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[(-1)bso_16] ≥ 0)







For Pair COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1]) the following chains were created:
  • We consider the chain COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1]) which results in the following constraint:

    (22)    (COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])∧(UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥))



    We simplified constraint (22) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (23)    ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[(-1)bso_18] ≥ 0)



    We simplified constraint (23) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (24)    ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[(-1)bso_18] ≥ 0)



    We simplified constraint (24) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (25)    ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[(-1)bso_18] ≥ 0)



    We simplified constraint (25) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (26)    ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_18] ≥ 0)







For Pair 1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0]) the following chains were created:
  • We consider the chain 1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0]), COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1]) which results in the following constraint:

    (27)    (&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0]))))=TRUEx1[0]=x1[1]x2[0]=x2[1]x0[0]=x0[1]1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))



    We simplified constraint (27) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (28)    (<=(0, +(+(x0[0], x1[0]), *(3, x2[0])))=TRUE>=(x2[0], x1[0])=TRUE>=(x1[0], x0[0])=TRUE1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))



    We simplified constraint (28) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (29)    (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] + [(-1)bni_19]x1[0] ≥ 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (29) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (30)    (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] + [(-1)bni_19]x1[0] ≥ 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (30) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (31)    (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] + [(-1)bni_19]x1[0] ≥ 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (31) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (32)    (x0[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧[2]x1[0] + [3]x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [(-3)bni_19]x2[0] + [(-2)bni_19]x1[0] + [bni_19]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (32) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (33)    (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [(-5)bni_19]x2[0] + [(2)bni_19]x1[0] + [bni_19]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • COND_1062_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))
    • ((UIncreasing(1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)

  • 1062_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])
    • (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[(-1)bso_16] ≥ 0)
    • (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧[-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[(-1)bso_16] ≥ 0)
    • (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[(-1)bso_16] ≥ 0)
    • (x0[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0∧[-1]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[(-1)bso_16] ≥ 0)

  • COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])
    • ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_18] ≥ 0)

  • 1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])
    • (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [(-5)bni_19]x2[0] + [(2)bni_19]x1[0] + [bni_19]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(COND_1062_0_REC_LOAD2(x1, x2, x3, x4)) = [-1] + x4 + [-1]x2   
POL(1062_0_REC_LOAD(x1, x2, x3)) = [-1] + x3 + [-1]x1   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(1) = [1]   
POL(&&(x1, x2)) = [-1]   
POL(<(x1, x2)) = [-1]   
POL(<=(x1, x2)) = [-1]   
POL(0) = 0   
POL(+(x1, x2)) = x1 + x2   
POL(*(x1, x2)) = x1·x2   
POL(3) = [3]   
POL(COND_1062_0_REC_LOAD(x1, x2, x3, x4)) = [-1] + x4 + [-1]x2   
POL(>=(x1, x2)) = [-1]   

The following pairs are in P>:

COND_1062_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1062_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))

The following pairs are in Pbound:

1062_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])

The following pairs are in P:

1062_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1062_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])
COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])
1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])

There are no usable rules.

(16) Complex Obligation (AND)

(17) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(4): 1062_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1062_0_REC_LOAD2(x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4], x1[4], x2[4], x0[4])
(1): COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], x2[1] - 1, x0[1])
(0): 1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0], x1[0], x2[0], x0[0])

(1) -> (0), if ((x1[1]* x1[0])∧(x2[1] - 1* x2[0])∧(x0[1]* x0[0]))


(0) -> (1), if ((x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0]* TRUE)∧(x1[0]* x1[1])∧(x2[0]* x2[1])∧(x0[0]* x0[1]))


(1) -> (4), if ((x1[1]* x1[4])∧(x2[1] - 1* x2[4])∧(x0[1]* x0[4]))



The set Q consists of the following terms:
1162_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1162_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)
1170_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1170_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)
1133_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1133_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)

(18) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(19) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0], x1[0], x2[0], x0[0])
(1): COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], x2[1] - 1, x0[1])

(1) -> (0), if ((x1[1]* x1[0])∧(x2[1] - 1* x2[0])∧(x0[1]* x0[0]))


(0) -> (1), if ((x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0]* TRUE)∧(x1[0]* x1[1])∧(x2[0]* x2[1])∧(x0[0]* x0[1]))



The set Q consists of the following terms:
1162_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1162_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)
1170_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1170_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)
1133_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1133_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)

(20) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0]) the following chains were created:
  • We consider the chain 1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0]), COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1]) which results in the following constraint:

    (1)    (&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0]))))=TRUEx1[0]=x1[1]x2[0]=x2[1]x0[0]=x0[1]1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (<=(0, +(+(x0[0], x1[0]), *(3, x2[0])))=TRUE>=(x2[0], x1[0])=TRUE>=(x1[0], x0[0])=TRUE1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [(-1)bni_8]x0[0] + [(2)bni_8]x2[0] + [(-1)bni_8]x1[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [(-1)bni_8]x0[0] + [(2)bni_8]x2[0] + [(-1)bni_8]x1[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [(-1)bni_8]x0[0] + [(2)bni_8]x2[0] + [(-1)bni_8]x1[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x0[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧[2]x1[0] + [3]x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [(5)bni_8]x2[0] + [(-1)bni_8]x0[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [(5)bni_8]x2[0] + [(-1)bni_8]x0[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)







For Pair COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1]) the following chains were created:
  • We consider the chain COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1]) which results in the following constraint:

    (8)    (COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])∧(UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥))



    We simplified constraint (8) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (9)    ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[1 + (-1)bso_11] ≥ 0)



    We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (10)    ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[1 + (-1)bso_11] ≥ 0)



    We simplified constraint (10) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (11)    ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[1 + (-1)bso_11] ≥ 0)



    We simplified constraint (11) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (12)    ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_11] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])
    • (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [(5)bni_8]x2[0] + [(-1)bni_8]x0[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)

  • COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])
    • ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_11] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(1062_0_REC_LOAD(x1, x2, x3)) = [1] + [-1]x3 + [2]x2 + [-1]x1   
POL(COND_1062_0_REC_LOAD(x1, x2, x3, x4)) = [-1]x4 + [2]x3 + [-1]x2   
POL(&&(x1, x2)) = [-1]   
POL(>=(x1, x2)) = [-1]   
POL(<=(x1, x2)) = [-1]   
POL(0) = 0   
POL(+(x1, x2)) = x1 + x2   
POL(*(x1, x2)) = x1·x2   
POL(3) = [3]   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(1) = [1]   

The following pairs are in P>:

1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])
COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])

The following pairs are in Pbound:

1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])

The following pairs are in P:
none

There are no usable rules.

(21) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], x2[1] - 1, x0[1])


The set Q consists of the following terms:
1162_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1162_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)
1170_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1170_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)
1133_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1133_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)

(22) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(23) TRUE

(24) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(5): COND_1062_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1062_0_REC_LOAD(x1[5], x2[5], x0[5] - 1)
(1): COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], x2[1] - 1, x0[1])
(0): 1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0], x1[0], x2[0], x0[0])

(1) -> (0), if ((x1[1]* x1[0])∧(x2[1] - 1* x2[0])∧(x0[1]* x0[0]))


(5) -> (0), if ((x1[5]* x1[0])∧(x2[5]* x2[0])∧(x0[5] - 1* x0[0]))


(0) -> (1), if ((x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0]* TRUE)∧(x1[0]* x1[1])∧(x2[0]* x2[1])∧(x0[0]* x0[1]))



The set Q consists of the following terms:
1162_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1162_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)
1170_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1170_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)
1133_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1133_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)

(25) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(26) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], x2[1] - 1, x0[1])
(0): 1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0], x1[0], x2[0], x0[0])

(1) -> (0), if ((x1[1]* x1[0])∧(x2[1] - 1* x2[0])∧(x0[1]* x0[0]))


(0) -> (1), if ((x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0]* TRUE)∧(x1[0]* x1[1])∧(x2[0]* x2[1])∧(x0[0]* x0[1]))



The set Q consists of the following terms:
1162_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1162_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)
1170_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1170_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)
1133_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1133_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)

(27) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1]) the following chains were created:
  • We consider the chain COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1]) which results in the following constraint:

    (1)    (COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])∧(UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥))



    We simplified constraint (1) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (2)    ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[(-1)bso_9] ≥ 0)



    We simplified constraint (2) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (3)    ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[(-1)bso_9] ≥ 0)



    We simplified constraint (3) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (4)    ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[(-1)bso_9] ≥ 0)



    We simplified constraint (4) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (5)    ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_9] ≥ 0)







For Pair 1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0]) the following chains were created:
  • We consider the chain 1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0]), COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1]) which results in the following constraint:

    (6)    (&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0]))))=TRUEx1[0]=x1[1]x2[0]=x2[1]x0[0]=x0[1]1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))



    We simplified constraint (6) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (7)    (<=(0, +(+(x0[0], x1[0]), *(3, x2[0])))=TRUE>=(x2[0], x1[0])=TRUE>=(x1[0], x0[0])=TRUE1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1062_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]x2[0] + [(-1)bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]x2[0] + [(-1)bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]x2[0] + [(-1)bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)



    We simplified constraint (10) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (11)    (x0[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧[2]x1[0] + [3]x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(5)bni_10]x2[0] + [(-1)bni_10]x0[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)



    We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (12)    (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(5)bni_10]x2[0] + [(-1)bni_10]x0[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])
    • ((UIncreasing(1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_9] ≥ 0)

  • 1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])
    • (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(5)bni_10]x2[0] + [(-1)bni_10]x0[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(COND_1062_0_REC_LOAD(x1, x2, x3, x4)) = [-1]x4 + [-1]x2 + [2]x3   
POL(1062_0_REC_LOAD(x1, x2, x3)) = [2] + [2]x2 + [-1]x3 + [-1]x1   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(1) = [1]   
POL(&&(x1, x2)) = [-1]   
POL(>=(x1, x2)) = [-1]   
POL(<=(x1, x2)) = [-1]   
POL(0) = 0   
POL(+(x1, x2)) = x1 + x2   
POL(*(x1, x2)) = x1·x2   
POL(3) = [3]   

The following pairs are in P>:

1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])

The following pairs are in Pbound:

1062_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1062_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])

The following pairs are in P:

COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])

There are no usable rules.

(28) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_1062_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1062_0_REC_LOAD(x1[1], x2[1] - 1, x0[1])


The set Q consists of the following terms:
1162_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1162_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)
1170_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1170_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)
1133_1_rec_InvokeMethod(1081_0_rec_Return(x0, x1, x2), x0, x1, x2)
1133_1_rec_InvokeMethod(1150_0_rec_Return, x0, x1, x2)

(29) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(30) TRUE